Genome location: Pf3D7_07_v3:1,357,251..1,363,653(+)
Genome classification: Core
Product Description: erythrocyte binding antigen-175
SignalP Peptide: MKCNISIYFFASFFVLYFAKA
# Transmembrane Domains: 1
EC Numbers: None
Curated GO (PlasmoDB):
Type | GO Term | Name |
---|---|---|
Component | GO:1903561 | extracellular vesicle |
Component | GO:0020009 | microneme |
Function | GO:0008201 | heparin binding |
Function | GO:0046789 | host cell surface receptor binding |
Process | GO:0044409 | entry into host |
Process | GO:0075109 | modulation by symbiont of host receptor-mediated signal transduction |
Expression by stage (LR - Le Roch et al., and MCA - Malaria Cell Atlas):
Stage | LR class | MCA mean | MCA prop. zeros |
---|---|---|---|
Sporozoite | not expressed | N/A | N/A |
Ring | expressed | 2.34 | 0.36 |
Trophozoite | possibly expressed | 0.65 | 0.68 |
Schizont | expressed | 0.95 | 0.61 |
Gametocyte | not expressed | 0.36 | 0.81 |
More info:
Old (Pf3D7v3) Gene ID: PF3D7_0731500
Resistome Missense Mutations: S998Y
Resistome Compounds with Missense Mutations: Suloctidil
Resistome # Samples with Disruptive Mutations: 2 (1 missense, 0 "interesting" missense)
Zhang Phenotype: Mutable in CDS
MIS: 1 | MFS: -1.966 | #Insertions: 7
PlasmoGEM Phenotype: Essential (Pb ortholog: PBANKA_1332700)
RMgmDB ABS Phenotype: N/A
More info: PhenoPlasm Link
AlphaFill Uniprot ID: Q8IBE8
"Best" AlphaFill ligand hit: 3PO (triphosphate, Local RMSD=0.26) with 5MZA (Global RMSD=6.80)
No associated EC numbersNo evidence of orthology to BindingDB entries
MalariaGEN Pf7 (worldwide samples) # unique SNV/indels:
Homozygous genotype calls only
variant type | common | rare | doubleton | singleton |
---|---|---|---|---|
synonymous | 8 | 13 | 14 | 50 |
disruptive | 50 | 96 | 49 | 142 |
missense | 49 | 91 | 47 | 123 |
Any inclusion in genotype call
variant type | common | rare | doubleton | singleton |
---|---|---|---|---|
synonymous | 10 | 36 | 28 | 60 |
disruptive | 69 | 168 | 90 | 200 |
missense | 59 | 152 | 83 | 167 |
PlasmoDB Total SNPs: 198
Non-coding: 81 | Synonymous: 41 | Nonsynonymous: 71 | Stop Codon: 5
Protein Length: 1502 | Molecular Weight (kDa): 174.588
UniProt ID(s): A0A0K2RVR1, A0A0K2RVR5, A0A0K2RVS0, A0A0K2RVS2, A0A0K2RVU0, A0A0K2RVV0, F2X7F7, F2X7G0, F2X7G1, F2X7G8, F2X7H3, F2X7H5, Q00588, Q05644, Q25841, Q25842, Q8IBE8, Q95VT1, Q9NG63, Q9TY53
PDB ID(s): 4K2U
Isoelectric Point: 5.47
Protein Domain Annotations:
Source | Family ID | Description |
---|---|---|
InterPro | IPR008602 | Duffy-antigen binding |
InterPro | IPR021620 | Erythrocyte binding antigen 175, C-terminal |
PFam | PF05424 | Duffy-antigen binding |
PFam | PF11556 | Erythrocyte binding antigen 175, C-terminal |
Superfamily | SSF140924 | N/A |
PMID | Title | Authors | DOI/Link |
---|---|---|---|
1310320 | A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen ofPlasmodium falciparum recognizes the terminal Neu5Ac(alpha 2-3)Gal- sequences ofglycophorin A. | Orlandi PA, Klotz FW, Haynes JD | 10.1083/jcb.116.4.901 |
3901257 | A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. | Camus D, Hadley TJ | 10.1126/science.3901257 |
15477199 | Myosin-like sequences in the malaria parasite Plasmodium falciparum bind humanerythrocyte membrane protein 4.1. | Lanzillotti R, Coetzer TL | https://pubmed.ncbi.nlm.nih.gov/15477199/ |
16051144 | Structural basis for the EBA-175 erythrocyte invasion pathway of the malariaparasite Plasmodium falciparum. | Tolia NH, Enemark EJ, Sim BK, Joshua-Tor L | 10.1016/j.cell.2005.05.033 |
18299268 | Interleukin-21 is associated with IgG1 and IgG3 antibodies to erythrocyte-bindingantigen-175 peptide 4 of Plasmodium falciparum in Gabonese children with acutefalciparum malaria. | Mewono L, Matondo Maya DW, ..., Mavoungou E | 10.1684/ecn.2008.0114 |
19421327 | Case-control approach to identify Plasmodium falciparum polymorphisms associatedwith severe malaria. | Chokejindachai W, Conway DJ | 10.1371/journal.pone.0005454 |
21292899 | Genetic diversity of polymorphic vaccine candidate antigens (apical membraneantigen-1, merozoite surface protein-3, and erythrocyte binding antigen-175) inPlasmodium falciparum isolates from western and central Africa. | Soulama I, Bigoga JD, ..., Sirima SB | 10.4269/ajtmh.2011.10-0365 |
21533224 | Delineation of stage specific expression of Plasmodium falciparum EBA-175 bybiologically functional region II monoclonal antibodies. | Sim BK, Narum DL, ..., Hoffman SL | 10.1371/journal.pone.0018393 |
23268338 | The upstream sequence segment of the C-terminal cysteine-rich domain is requiredfor microneme trafficking of Plasmodium falciparum erythrocyte binding antigen175. | Sakura T, Yahata K, Kaneko O | 10.1016/j.parint.2012.12.002 |
23717209 | Structural and functional basis for inhibition of erythrocyte invasion byantibodies that target Plasmodium falciparum EBA-175. | Chen E, Paing MM, ..., Tolia NH | 10.1371/journal.ppat.1003390 |
24043627 | Biochemical analysis of the Plasmodium falciparum erythrocyte-binding antigen-175(EBA175)-glycophorin-A interaction: implications for vaccine design. | Wanaguru M, Crosnier C, ..., Wright GJ | 10.1074/jbc.M113.484840 |
24212193 | Analyses of interactions between heparin and the apical surface proteins ofPlasmodium falciparum. | Kobayashi K, Takano R, ..., Kato K | 10.1038/srep03178 |
25205096 | Critical glycosylated residues in exon three of erythrocyte glycophorin A engagePlasmodium falciparum EBA-175 and define receptor specificity. | Salinas ND, Paing MM, Tolia NH | 10.1128/mBio.01606-14 |
26231699 | Genetic evidence for contribution of human dispersal to the genetic diversity ofEBA-175 in Plasmodium falciparum. | Yasukochi Y, Naka I, ..., Ohashi J | 10.1186/s12936-015-0820-2 |
28226242 | Plasmodium falciparum ligand binding to erythrocytes induce alterations indeformability essential for invasion | Sisquella X, Nebl T, ..., Cowman AF | 10.7554/eLife.21083 |
28373555 | Plasmodium falciparum erythrocyte-binding antigen 175 triggers a biophysicalchange in the red blood cell that facilitates invasion. | Koch M, Wright KE, ..., Baum J | 10.1073/pnas.1620843114 |
28944300 | Proteomic analysis of extracellular vesicles from a Plasmodium falciparum Kenyanclinical isolate defines a core parasite secretome. | Abdi A, Yu L, ..., Rayner J | 10.12688/wellcomeopenres.11910.2 |
32718776 | Designing peptide-based vaccine candidates for Plasmodium falciparum erythrocytebinding antigen 175. | Chauhan S, Kumar R, ..., Farooq U | 10.1016/j.biologicals.2020.07.002 |
37624328 | High Prevalence of Polyclonal Plasmodium falciparum Infections and Associationwith Poor IgG Antibody Responses in a Hyper-Endemic Area in Cameroon | Biabi MFAB, Fogang B, ..., Ayong L | 10.3390/tropicalmed8080390 |
34538247 | Population genetic analysis of the Plasmodium falciparum erythrocyte bindingantigen-175 (EBA-175) gene in Equatorial Guinea | Yang PK, Liang XY, ..., Wu YE | 10.1186/s12936-021-03904-x |
37515848 | Are high avidity antibodies to Plasmodium falciparum antigens preferentiallytransferred across the placenta of premature and term babies? | Kayatani AKK, Bobbili N, ..., Taylor DW | 10.1016/j.placenta.2023.07.011 |
37653544 | Recent increase in low complexity polygenomic infections and sialicacid-independent invasion pathways in Plasmodium falciparum from Western Gambia | Nganyewo NN, Bojang F, ..., Amambua-Ngwa A | 10.1186/s13071-023-05929-4 |
36163104 | Housebreaking Plasmodium parasites leave their fingerprints at the door | Bardtke L, Cockburn IA | 10.1016/j.pt.2022.09.005 |
37754682 | Associations between prenatal malaria exposure, maternal antibodies at birth, andmalaria susceptibility during the first year of life in Burkina Faso | Natama HM, Moncunill G, ..., Dobano C | 10.1128/iai.00268-23 |
35198913 | Serological evaluation of the effectiveness of reactive focal mass drugadministration and reactive vector control to reduce malaria transmission inZambezi Region, Namibia: Results from a secondary analysis of a clusterrandomised trial | Wu L, Hsiang MS, ..., Kleinschmidt I | 10.1016/j.eclinm.2022.101272 |
33663492 | Genomic analysis reveals independent evolution of Plasmodium falciparumpopulations in Ethiopia | Abera D, Kibet CK, ..., Golassa L | 10.1186/s12936-021-03660-y |
36403045 | Characterization of the primary antibody response to Plasmodium falciparumantigens in infants living in a malaria-endemic area | Tassi Yunga S, Siriwardhana C, ..., Taylor DW | 10.1186/s12936-022-04360-x |
33170876 | The immunoglobulin G antibody response to malaria merozoite antigens inasymptomatic children co-infected with malaria and intestinal parasites | Ndiabamoh CM, Ekali GL, ..., Leke RGF | 10.1371/journal.pone.0242012 |
36692923 | The Effects of HIV Infection on the Immune Response to Malaria Among PregnantWomen in Kumba, Southwest Cameroon: Protocol for a Cross-sectional Study | Obase BN, Francis Z, ..., Nsagha DS | 10.2196/38213 |
33722929 | Does Antibody Avidity to Plasmodium falciparum Merozoite Antigens Increase with Age in Individuals Living in Malaria-Endemic Areas? | Tassi Yunga S, Bobbili N, ..., Taylor DW | 10.1128/IAI.00522-20 |
34305923 | Identification and Immune Assessment of T Cell Epitopes in Five Plasmodiumfalciparum Blood Stage Antigens to Facilitate Vaccine Candidate Selection andOptimization | Kotraiah V, Phares TW, ..., Noe AR | 10.3389/fimmu.2021.690348 |
36812236 | Effects of anti-malarial prophylaxes on maternal transfer of Immunoglobulin-G(IgG) and association to immunity against Plasmodium falciparum infections amongchildren in a Ugandan birth cohort | Okek EJ, Ocan M, ..., Kamya MR | 10.1371/journal.pone.0277789 |
34376744 | In silico characterisation of putative Plasmodium falciparum vaccine candidatesin African malaria populations | Ajibola O, Diop MF, ..., Amambua-Ngwa A | 10.1038/s41598-021-95442-4 |
37090581 | Plasmodium falciparum exploits CD44 as a co-receptor for erythrocyte invasion | Baro-Sastre B, Kim CY, ..., Egan ES | 10.1101/2023.04.12.536503 |
34395314 | Calcium in the Backstage of Malaria Parasite Biology | de Oliveira LS, Alborghetti MR, ..., Charneau S | 10.3389/fcimb.2021.708834 |
33183292 | Sero-epidemiological evaluation of malaria transmission in The Gambia before andafter mass drug administration | Wu L, Mwesigwa J, ..., Drakeley C | 10.1186/s12916-020-01785-6 |
37832027 | Plasmodium falciparum exploits CD44 as a coreceptor for erythrocyte invasion | Baro B, Kim CY, ..., Egan ES | 10.1182/blood.2023020831 |
35108259 | Global diversity and balancing selection of 23 leading Plasmodium falciparumcandidate vaccine antigens | Naung MT, Martin E, ..., Barry AE | 10.1371/journal.pcbi.1009801 |